Inferring network topology via the propagation process
نویسنده
چکیده
Inferring the network topology from the dynamics is a fundamental problem, with wide applications in geology, biology, and even counter-terrorism. Based on the propagation process, we present a simple method to uncover the network topology. A numerical simulation on artificial networks shows that our method enjoys a high accuracy in inferring the network topology. We find that the infection rate in the propagation process significantly influences the accuracy, and that each network corresponds to an optimal infection rate. Moreover, the method generally works better in large networks. These finding are confirmed in both real social and nonsocial networks. Finally, the method is extended to directed networks, and a similarity measure specific for directed networks is designed.
منابع مشابه
Prediction of the Effect of Polymer Membrane Composition in a Dry Air Humidification Process via Neural Network Modeling
Utilization of membrane humidifiers is one of the methods commonly used to humidify reactant gases in polymer electrolyte membrane fuel cells (PEMFC). In this study, polymeric porous membranes with different compositions were prepared to be used in a membrane humidifier module and were employed in a humidification test. Three different neural network models were developed to investigate several...
متن کاملInference of large-scale topology of gene regulation networks by neural nets
* 0-7803-7952-7/03/$17.00 2003 IEEE. Abstract This paper addresses the problem of inferring topological features of gene regulation networks from data that are likely to be available from current experimental methods, such as DNA microarrays. The proposed method uses neural networks to predict the topology class from histograms of perturbation propagation data. The preliminary results with si...
متن کاملModeling of Oxidative Coupling of Methane over Mn/Na2WO4/SiO2 Catalyst Using Artificial Neural Network
In this article, the effect of operating conditions, such as temperature, Gas Hourly Space Velocity (GHSV), CH4/O2 ratio and diluents gas (mol% N2) on ethylene production by Oxidative Coupling of Methane (OCM) in a fixed bed reactor at atmospheric pressure was studied over Mn/Na2WO4/SiO2 ca...
متن کاملPlaying Devil's Advocate: Inferring Sensitive Information from Anonymized Network Traces
Encouraging the release of network data is central to promoting sound network research practices, though the publication of this data can leak sensitive information about the publishing organization. To address this dilemma, several techniques have been suggested for anonymizing network data by obfuscating sensitive fields. In this paper, we present new techniques for inferring network topology...
متن کاملAdaptive neuro-fuzzy inference system and neural network in predicting the size of monodisperse silica and process optimization via simulated annealing algorithm
In this study, Back-propagation neural network (BPNN) and adaptive neuro-fuzzy inference system (ANFIS) methods were applied to estimate the particle size of silica prepared by sol-gel technique. Simulated annealing algorithm (SAA) employed to determine the optimum practical parameters of the silica production. Accordingly, the process parameters, i.e. tetraethyl orthosilicate (TEOS), H2O and N...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1311.5072 شماره
صفحات -
تاریخ انتشار 2013